99 research outputs found

    EEG Resting-State Brain Topological Reorganization as a Function of Age

    Get PDF
    Resting state connectivity has been increasingly studied to investigate the effects of aging on the brain. A reduced organization in the communication between brain areas was demonstrated b y combining a variety of different imaging technologies (fMRI, EEG, and MEG) and graph theory. In this paper, we propose a methodology to get new insights into resting state connectivity and its variations with age, by combining advanced techniques of effective connectivity estimation, graph theoretical approach, and classification by SVM method. We analyzed high density EEG signal srecordedatrestfrom71healthysubjects(age:20–63years). Weighted and directed connectivity was computed by means of Partial Directed Coherence based on a General Linear Kalman filter approach. To keep the information collected by the estimator, weighted and directed graph indices were extracted from the resulting networks. A relation between brain network properties and age of the subject was found, indicating a tendency of the network to randomly organize increasing with age. This result is also confirmed dividing the whole population into two subgroups according to the age (young and middle-aged adults): significant differences exist in terms of network organization measures. Classification of the subjects by means of such indices returns an accuracy greater than 80

    Electroencephalography (EEG)-Derived Markers to Measure Components of Attention Processing

    Get PDF
    Although extensively studied for decades, attention system remains an interesting challenge in neuroscience field. The Attention Network Task (ANT) has been developed to provide a measure of the efficiency for the three attention components identified in the Posner’s theoretical model: alerting, orienting and executive control. Here we propose a study on 15 healthy subjects who performed the ANT. We combined advanced methods for connectivity estimation on electroencephalographic (EEG) signals and graph theory with the aim to identify neuro-physiological indices describing the most important features of the three networks correlated with behavioral performances. Our results provided a set of band-specific connectivity indices able to follow the behavioral task performances among subjects for each attention component as defined in the ANT paradigm. Extracted EEG-based indices could be employed in future clinical applications to support the behavioral assessment or to evaluate the influence of specific attention deficits on Brain Computer Interface (BCI) performance and/or the effects of BCI training in cognitive rehabilitation applications

    Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators

    Get PDF
    One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow between two processes in terms of prediction error variances. In its most advanced setting, GC analysis is performed through a statespace (SS) representation of the VAR model that allows to compute both conditional and unconditional forms of GC by solving only one regression problem. While this problem is typically solved through Ordinary Least Square (OLS) estimation, a viable alternative is to use Artificial Neural Networks (ANNs) implemented in a simple structure with one input and one output layer and trained in a way such that the weights matrix corresponds to the matrix of VAR parameters. In this work, we introduce an ANN combined with SS models for the computation of GC. The ANN is trained through the Stochastic Gradient Descent L1 (SGD-L1) algorithm, and a cumulative penalty inspired from penalized regression is applied to the network weights to encourage sparsity. Simulating networks of coupled Gaussian systems, we show how the combination of ANNs and SGD-L1 allows to mitigate the strong reduction in accuracy of OLS identification in settings of low ratio between number of time series points and of VAR parameters. We also report how the performances in GC estimation are influenced by the number of iterations of gradient descent and by the learning rate used for training the ANN. We recommend using some specific combinations for these parameters to optimize the performance of GC estimation. Then, the performances of ANN and OLS are compared in terms of GC magnitude and statistical significance to highlight the potential of the new approach to reconstruct causal coupling strength and network topology even in challenging conditions of data paucity. The results highlight the importance of of a proper selection of regularization parameter which determines the degree of sparsity in the estimated network. Furthermore, we apply the two approaches to real data scenarios, to study the physiological network of brain and peripheral interactions in humans under different conditions of rest and mental stress, and the effects of the newly emerged concept of remote synchronization on the information exchanged in a ring of electronic oscillators. The results highlight how ANNs provide a mesoscopic description of the information exchanged in networks of multiple interacting physiological systems, preserving the most active causal interactions between cardiovascular, respiratory and brain systems. Moreover, ANNs can reconstruct the flow of directed information in a ring of oscillators whose statistical properties can be related to those of physiological network

    Cortico-muscular coupling to control a hybrid brain-computer interface for upper limb motor rehabilitation: A pseudo-online study on stroke patients

    Get PDF
    Brain-Computer Interface (BCI) systems for motor rehabilitation after stroke have proven their efficacy to enhance upper limb motor recovery by reinforcing motor related brain activity. Hybrid BCIs (h-BCIs) exploit both central and peripheral activation and are frequently used in assistive BCIs to improve classification performances. However, in a rehabilitative context, brain and muscular features should be extracted to promote a favorable motor outcome, reinforcing not only the volitional control in the central motor system, but also the effective projection of motor commands to target muscles, i.e., central-to-peripheral communication. For this reason, we considered cortico-muscular coupling (CMC) as a feature for a h-BCI devoted to post-stroke upper limb motor rehabilitation. In this study, we performed a pseudo-online analysis on 13 healthy participants (CTRL) and 12 stroke patients (EXP) during executed (CTRL, EXP unaffected arm) and attempted (EXP affected arm) hand grasping and extension to optimize the translation of CMC computation and CMC-based movement detection from offline to online. Results showed that updating the CMC computation every 125 ms (shift of the sliding window) and accumulating two predictions before a final classification decision were the best trade-off between accuracy and speed in movement classification, independently from the movement type. The pseudo-online analysis on stroke participants revealed that both attempted and executed grasping/extension can be classified through a CMC-based movement detection with high performances in terms of classification speed (mean delay between movement detection and EMG onset around 580 ms) and accuracy (hit rate around 85%). The results obtained by means of this analysis will ground the design of a novel non-invasive h-BCI in which the control feature is derived from a combined EEG and EMG connectivity pattern estimated during upper limb movement attempts

    Neuroelectrical correlates of trustworthiness and dominance judgments related to the observation of political candidates

    Get PDF
    The present research investigates the neurophysiological activity elicited by fast observations of faces of real candidates during simulated political elections. We used simultaneous recording of electroencephalographic (EEG) signals as well as galvanic skin response (GSR) and heart rate (HR) as measurements of central and autonomic nervous systems. Twenty healthy subjects were asked to give judgments on dominance, trustworthiness, and a preference of vote related to the politicians' faces. We used high-resolution EEG techniques to map statistical differences of power spectral density (PSD) cortical activity onto a realistic head model as well as partial directed coherence (PDC) and graph theory metrics to estimate the functional connectivity networks and investigate the role of cortical regions of interest (ROIs). Behavioral results revealed that judgment of dominance trait is the most predictive of the outcome of the simulated elections. Statistical comparisons related to

    Neuroelectrical Correlates of Trustworthiness and Dominance Judgments Related to the Observation of Political Candidates

    Get PDF
    The present research investigates the neurophysiological activity elicited by fast observations of faces of real candidates during simulated political elections. We used simultaneous recording of electroencephalographic (EEG) signals as well as galvanic skin response (GSR) and heart rate (HR) as measurements of central and autonomic nervous systems. Twenty healthy subjects were asked to give judgments on dominance, trustworthiness, and a preference of vote related to the politicians’ faces. We used high-resolution EEG techniques to map statistical differences of power spectral density (PSD) cortical activity onto a realistic head model as well as partial directed coherence (PDC) and graph theory metrics to estimate the functional connectivity networks and investigate the role of cortical regions of interest (ROIs). Behavioral results revealed that judgment of dominance trait is the most predictive of the outcome of the simulated elections. Statistical comparisons related to PSD and PDC values highlighted an asymmetry in the activation of frontal cortical areas associated with the valence of the judged trait as well as to the probability to cast the vote. Overall, our results highlight the existence of cortical EEG features which are correlated with the prediction of vote and with the judgment of trustworthy and dominant faces

    Neuroelectrical Hyperscanning Measures Simultaneous Brain Activity in Humans

    Get PDF
    In this study we illustrate a methodology able to follow and study concurrent and simultaneous brain processes during cooperation between individuals, with non invasive EEG methodologies. We collected data from fourteen pairs of subjects while they were playing a card game with EEG. Data collection was made simultaneously on all the subjects during the card game. An extension of the Granger-causality approach allows us to estimate the functional connection between signals estimated from different Regions of Interest (ROIs) in different brains during the analyzed task. Finally, with the use of graph theory, we contrast the functional connectivity patterns of the two players belonging to the same team. Statistically significant functional connectivities were obtained from signals estimated in the ROIs modeling the anterior cingulate cortex (ACC) and the prefrontal areas described by the Brodmann areas 8 with the signals estimated in all the other modelled cortical areas. Results presented suggested the existence of Granger-sense causal relations between the EEG activity estimated in the prefrontal areas 8 and 9/46 of one player with the EEG activity estimated in the ACC of their companion. We illustrated the feasibility of functional connectivity methodology on the EEG hyperscannings performed on a group of subjects. These functional connectivity estimated from the couple of brains could suggest, in statistical and mathematical terms, the modelled cortical areas that are correlated in Granger-sense during the solution of a particular task. EEG hyperscannings could be used to investigate experimental paradigms where the knowledge of the simultaneous interactions between the subjects have a value

    On the Use of EEG or MEG Brain Imaging Tools in Neuromarketing Research

    Get PDF
    Here we present an overview of some published papers of interest for the marketing research employing electroencephalogram (EEG) and magnetoencephalogram (MEG) methods. The interest for these methodologies relies in their high-temporal resolution as opposed to the investigation of such problem with the functional Magnetic Resonance Imaging (fMRI) methodology, also largely used in the marketing research. In addition, EEG and MEG technologies have greatly improved their spatial resolution in the last decades with the introduction of advanced signal processing methodologies. By presenting data gathered through MEG and high resolution EEG we will show which kind of information it is possible to gather with these methodologies while the persons are watching marketing relevant stimuli. Such information will be related to the memorization and pleasantness related to such stimuli. We noted that temporal and frequency patterns of brain signals are able to provide possible descriptors conveying information about the cognitive and emotional processes in subjects observing commercial advertisements. These information could be unobtainable through common tools used in standard marketing research. We also show an example of how an EEG methodology could be used to analyze cultural differences between fruition of video commercials of carbonated beverages in Western and Eastern countries

    The Promotoer, a brain-computer interface-assisted intervention to promote upper limb functional motor recovery after stroke: a statistical analysis plan for a randomized controlled trial

    Get PDF
    Background: Electroencephalography (EEG)-based brain-computer interfaces (BCIs) allow to modulate the sensorimotor rhythms and are emerging technologies for promoting post-stroke motor function recovery. The Promotoer study aims to assess the short and long-term efficacy of the Promotoer system, an EEG-based BCI assisting motor imagery (MI) practice, in enhancing post-stroke functional hand motor recovery. This paper details the statistical analysis plan of the Promotoer study. Methods: The Promotoer study is a randomized, controlled, assessor-blinded, single-centre, superiority trial, with two parallel groups and a 1:1 allocation ratio. Subacute stroke patients are randomized to EEG-based BCI-assisted MI training or to MI training alone (i.e. no BCI). An internal pilot study for sample size re-assessment is planned. The primary outcome is the effectiveness of the Upper Extremity Fugl-Meyer Assessment (UE-FMA) score. Secondary outcomes include clinical, functional, and user experience scores assessed at the end of intervention and at follow-up. Neurophysiological assessments are also planned. Effectiveness formulas have been specified, and intention-to-treat and per-protocol populations have been defined. Statistical methods for comparisons of groups and for development of a predictive score of significant improvement are described. Explorative subgroup analyses and methodology to handle missing data are considered. Discussion: The Promotoer study will provide robust evidence for the short/long-term efficacy of the Promotoer system in subacute stroke patients undergoing a rehabilitation program. Moreover, the development of a predictive score of response will allow transferring of the Promotoer system to optimal clinical practice. By carefully describing the statistical principles and procedures, the statistical analysis plan provides transparency in the analysis of data. Trial registration: ClinicalTrials.gov NCT04353297 . Registered on April 15, 2020

    Risk factors for 2-year mortality in patients with prolonged disorders of consciousness: An international multicentre study.

    Full text link
    peer reviewedBACKGROUND AND PURPOSE: Patients with prolonged disorders of consciousness (pDoC) have a high mortality rate due to medical complications. Because an accurate prognosis is essential for decision-making on patients' management, we analysed data from an international multicentre prospective cohort study to evaluate 2-year mortality rate and bedside predictors of mortality. METHODS: We enrolled adult patients in prolonged vegetative state/unresponsive wakefulness syndrome (VS/UWS) or minimally conscious state (MCS) after traumatic and nontraumatic brain injury within 3 months postinjury. At enrolment, we collected demographic (age, sex), anamnestic (aetiology, time postinjury), clinical (Coma Recovery Scale-Revised [CRS-R], Disability Rating Scale, Nociception Coma Scale-Revised), and neurophysiologic (electroencephalogram [EEG], somatosensory evoked and event-related potentials) data. Patients were followed up to gather data on mortality up to 24 months postinjury. RESULTS: Among 143 traumatic (n = 55) and nontraumatic (n = 88) patients (VS/UWS, n = 68, 19 females; MCS, n = 75, 22 females), 41 (28.7%) died within 24 months postinjury. Mortality rate was higher in VS/UWS (42.6%) than in MCS (16%; p < 0.001). Multivariate regression in VS/UWS showed that significant predictors of mortality were older age and lower CRS-R total score, whereas in MCS female sex and absence of alpha rhythm on EEG at study entry were significant predictors. CONCLUSIONS: This study demonstrated that a feasible multimodal assessment in the postacute phase can help clinicians to identify patients with pDoC at higher risk of mortality within 24 months after brain injury. This evidence can help clinicians and patients' families to navigate the complex clinical decision-making process and promote an international standardization of prognostic procedures for patients with pDoC
    corecore